
Time to Tie the Knot
Executive Summary
On April 2016, Open Mobile Alliance invited automotive
industry leaders from OEM, Tier1, and other suppliers
to combine their knowledge of emerging standards
developing between automotive and the Internet of
Things. The result was a compilation of several key
projects that promise better alignment and interoperability.
Until then, the auto industry is operating in its single
space, as is the wireless telecom industry, trying to find a
match. There are some hot topics in connected automotive
standardization, and some are being developed in the
Open Source space to enable broad collaboration between
contributors:

• SDL – Smart Device Link, an open source
implementation of Ford’s AppLink (Ford Sync) software
libraries enabling smartphone integration across all radio
levels and brands of devices (Apple, Android, Windows,
etc.)

• RVI – Remote Vehicle Interaction, an open source
project by JLR Research Centre in Portland, OR. Enables
universal connectivity to the vehicle bus transparently
across LTE, Wi-Fi, Bluetooth, 3G, NFC and future
networking technologies by embedding a standard
software module in the car head unit

• VSS – Vehicle Data format standard emerging from work
between W3C as implemented by RVI project

• SOTA – Software Over the Air (included in RVI above)
through the entire vehicle (ASIL grade Safety and
Security)

• IoTivity – Initially an IoT implementation of the OCF
efforts, now emerging with automotive requirements
influenced by RVI and VSS

• OMA DM, LwM2M, and GotAPI – 3 highly adopted
standards for interoperability and device management

Open Mobile Alliance, Ltd. 5703 Oberlin Drive, Suite 209 San Diego, CA 92121 USA
Telephone: +1.858.623.0746 Fax: +1.858.623.0743
www.openmobilealliance.org

Telecom and Automotive—
through Standards

developed by the wireless operators to ensure some
level of compatibility and support of over 2 billion devices
(phones, tablets, etc.) but not yet including cars in all
cases

Meanwhile, both industries want to improve their
relationships and enable a path for automakers and Mobile
Network Operators (MNOs) to encourage communications
interoperability across automotive and wireless industries.
Their goals include:

• Establish a venue for discussion between telecom
and automotive at a technical and production level to
establish any network, any automobile connectivity.

• Adapt select current specifications to optimize for the
needs of the Automotive market.

• Create a path for Auto industry to interface with the rest
of IoT via standardized enablers.

• Bridge existing standards with standardization efforts in
the Automotive sector.

Introduction
We live in an increasingly automated world with complex
interactions between the inventions we depend on
and those we simply enjoy using. The interactions
(or interoperability) among devices depend largely on
standardization efforts. However, to achieve interoperability
between collections of machines such as cars, computers,
appliances or even cities and homes, deeper levels of
agreed standards are needed. Enterprise IT solved this
through widespread deployment of standard software
across most companies, such as Microsoft Windows
and Microsoft Office. These products represent an
implementation of a final architectural design that works
with itself smoothly. Apple has a similar approach where
design, testing, and support all come from a single source.
However, even in this environment, issues have arisen
when one company or department uses one product, and
another company or department uses the other.

© Copyright Open Mobile Alliance 2017

http://openmobilealliance.org/

© Copyright Open Mobile Alliance 2017

2 / 15

One example is the use of contact information and calendar
reminders. At one time, both Microsoft and Apple devised
separate methods to store and share these small bits of
information needed to synchronize between users in the
enterprise. This feature allowed people working in different
countries and time zones to see the dates in their format and time
zone, yet store them in a standard format for exchange. Enterprise
users with mostly Microsoft Office, but a few Apple Macs, left
the minority users in the cold until a standard, agreed upon format
was defined, developed, tested and implemented in the otherwise
closed systems. The data format and API for this is now called
vCard and vCal. Through its implementation, the enterprise users
have the choice of device, operating system, and application. Now
that tablets, phones, and even Linux PCs are part of the plan,
all they need to do is implement the standard. Thus, BYOD, or
Bring Your Own Device, was enabled and is now an enterprise IT
expectation along with the implications of incorporating personal
preferences by users to maximize productivity.

Recently the open source software model (OSS) has caught
momentum as a way for hundreds of different companies to
participate in the development of software design and code
creation. This model not only includes a licensing philosophy that
tries to remove costly barriers to participation but encourages
the use of a common base of code. Around the year 2006,
automotive software development began to use this method
to help manage the millions of lines of code needed to create a
modern vehicle. The total number of cars heading to production
is divided by at least ten automakers, often with hundreds of
combinations of makes, model years and trim levels resulting in
relatively small numbers of validation resources for each variation.
This issue is driving car development costs and bugs to record
levels, resulting in higher prices and costly recalls after the cars
are on the road. Add in the concept of self-driving cars and safety
automation features and the costs are measured in both currency
and lives. The collaborative model helps with this but still requires
standardization to be useful. Most of the projects described in this
paper have an open source implementation, yet can be adapted to
production software delivered inside future cars.

Interoperability standards in data formats and programming

interfaces (APIs) are even more essential if non-automotive
devices are attached to the "connected cars." Otherwise,
consumers need to buy all their home appliances and
electronic devices from the car dealer. This model ended with
the "car phone" but continues in some way with the limited
services available in closed telematics offers by each carmaker.

The auto industry and wireless telecom industry have been
flirting for decades; it's time to tie the knot.

Interoperability Across Industries
There are a series of initiatives in the automotive industry
that will touch the mobile environment. There is work going
on in the mobile/IoT industry that will need to interoperate
with automobiles. It is important to avoid wasting resources
by "reinventing the wheel" when proper protocols that already
exist and are already deployed can be used.

There are many one-to-one company level programs underway.
There is NOT a conversation happening at the industry-to-
industry level to ensure standards-based interoperability
and reduce fragmentation of protocols across automotive
interacting with IoT and mobile services. The overall needs
of the auto industry need to merge with mobile/IoT industry
developments – harmonization of requirements and solutions
between the mobile and the automobile environments.

The auto industry wants to ensure openness and mobile
device interoperability with the car telematics systems.
Automakers run the risk of becoming a “dumb device”
with no control over user data if they are not involved in the
standardization and development of next generation connected
car services and products. MNOs and automakers could get
forced to the sidelines where consumer touch, data collection,
and ownership are no longer future revenue sources. The
existing automotive approach of proprietary implementations
is no longer working and needs to be expanded to a cross-
industry effort between automotive and telecom.

Vehicle Security
Vehicle Security is a very broad subject. Over the past 10

0101
0101
0101

0101
0101
0101

by 2025, 100%
of all cars will be

connected

>100 ECUs
in some
models

>100,000,000 lines
of code

and growing

84M vehicles
re-called in USA

in 2015

6.4% of all
re-calls related

to software

0101
0101
0101

Figure 1 - Numbers to illustrate the automotive software crisis scale

© Copyright Open Mobile Alliance 2017

3 / 15

to 20 years the number of computers (ECUs) on the car
and the amount of software running on these ECUs grew
exponentially. Today’s cars come with tens of ECUs connected
to several networks. Unfortunately, the vehicle and the
network of ECUs it includes were not designed with security
in mind and were not designed to be attached to the external
world.

The introduction of the connected car puts the industry
in a situation that is like the introduction of the connected
computer back in the late 90s. Connecting computers to the
Internet back then required IT to build the infrastructure to
protect the computers on the internal networks. Fortunately,
most of this IT software can be leveraged to protect the
communication between the car to the external world,
however, challenges to protecting the communication
between car computers and external devices from the hostile
environment still exist.

The massive amounts of software on the car exposes many
vulnerabilities that might be exploited by hostile agents to
cause harm to the driver, to steal private information or to spy
on the driver whereabouts. Software update Over-the-Air (OTA)
is a mandatory element enabling the OEM to fix the software
vulnerabilities without the need for an expensive recall. The
connected car introduced a serious problem that OTA is
solving, taking advantage of the automotive connectivity.

There are multiple standardization efforts underway
attempting to address these and other issues surrounding
the connected car. The following list should be a part
of product managers’ research when developing next
generation connected vehicles.

Automotive
Technology Trends
Connected Car Standards
Available and in Use Today

OMA DM for Over-the-Air (OTA)
The OMA-DM protocol is deployed by leading Mobile Network
Operators (MNOs) like AT&T, NTT DOCOMO, SoftBank, Sprint,
T-Mobile US and Verizon Wireless. The MNOs use the OMA-
DM protocol to manage mobile devices on their network. The
following are some of the use cases MNOs have deployed:

• Provisioning: Initial device configuration (aka Bootstrap) and
enabling and disabling device features

• Device Configuration: Modifications of various settings and
parameters of the device

• Software Upgrades: Enable Over-the-air (OTA) software
update including Firmware Update (FUMO) and system and
applications components (SCOMO)

• Fault Management: Allow querying the device status and
report device errors

Figure 2 - Some examples of the vulnerabilities of a modern car

open source
software

vulnerabilities

man-in-the-
middle attack

attack from
downloaded

apps

sniffing of
user data

attack from
apps on mobile

device

attack on key
certificate

malicious
software

malware through
encoding in music

malicious
firmware
update

attack on
vehicle bus

© Copyright Open Mobile Alliance 2017

4 / 15

The OMA-DM protocol is designed with interoperability and
security in mind:

• Interoperability is achieved by the work of the OMA
Interoperability (IOP) work group. The IOP work group
specify and maintain the required processes, policies and
test programs in addition to running regular test-fests where
different vendors can attend and test their client and server
software.

• Security is important because devices are exposed to
software attacks. The OMA-DM protocol is designed with
safety features like device authentication and challenges.

The OMA-DM protocol allows manufacturers and service
providers to continuously increase the usefulness and value of
connected devices throughout their entire lifecycle. They can
optimize device performance, deliver unique insights, facilitate
the rollout of innovative services and contribute to increased
ARPU.

In recent years, with the introduction of the connected car, the
term "mobile device" is extended to include the "large mobile
device" of the automotive industry. Many car OEMs choose
to use the OMA-DM protocol to manage the configuration
and software of the cars they are building. This enables car
manufacturers to capitalize on the full business potential of
connected cars by enhancing driver experience with rapid
deployment of value-added in-car services, and minimizing
costs through improved efficiency and a reduction in recalls.

OTA Software Update Security
When it comes to OTA software update the security goals of
the end-to-end OTA system include the following aspects:

• Authentication

• Authorization

• Confidentiality

• Integrity

Authentication ensures which actors can work within the
OTA system. It could be an admin authenticating to the OTA
server, the car authenticating itself to the OTA server, or each
software package being validated right before the installation.
The authorization makes sure that every actor works within
the policies dictated by the OTA system designer. Admin has
role-based access, software for one ECU cannot install on a
different ECU, etc.

Confidentiality requires that all software artifacts are protected
so that software and IP do not end up in the wrong hands.
Integrity verifies that every piece of software, in transit or at
rest, has not been maliciously or otherwise modified.

OMA DM is designed with these security goals in mind. For
the past decade, OMA DM has been successfully used on
billions of mobile devices to deliver software updates over
the air securely. Adopting the OMA DM protocol to provide
OTA services for the automotive market is the right direction.
In fact, at least four commercial products for the automotive
industry include support for OMA DM to enable SOTA.

OTA service

admin users

OEM backend

Figure 3 - End to end OTA Software Update

© Copyright Open Mobile Alliance 2017

5 / 15

Automotive Industry
Standards in the Works
Device APIs Overview
Through a focus on device APIs, we can enable Automotive
systems to offer API services to apps running in app
environments provided by the Auto system. Such API services
can enable apps to access vehicle information/services or
other connected devices. There are several standardization
efforts ongoing that can achieve this.

W3C Automotive Web API

6.1.1 Overview and objective of project
W3C first explored the impact of the Open Web Platform
in the automotive industry at the November 2012 Web
and Automotive Workshop. Participants discussed how
location-based services, enhanced safety, entertainment and
integration of social networking would benefit drivers and
passengers. Since then, the Business and Working Groups
have kept the conversation around standardization and
specifications, through regular meetings with stakeholders.
The Automotive Working Group develops APIs to expose
vehicle data and information from automotive network bus(es)
(e.g., MOST and CAN). The specification consists of two parts:

1. Vehicle Information Specification containing durable,
unchanging access methods for obtaining vehicle
information;

2. Vehicle Data Specification to specify agreed upon
standardized data elements as well as the technique for
extending data elements to OEM-specific features.

The W3C Automotive Specifications follows a client-server
architecture. The W3C Automotive compliant web clients
"connect" to a W3C Vehicle Server using secure WebSocket
connection (wss://). The Vehicle Signal Server abstracts the
communications with the underlying automotive networks
(like CAN, MOST, etc.), and presents a simple set of Web API
for the clients. Beyond this, the interactions between client
and server follow a Request/Response model.

After the initial connection is established, the client is
"Authorized" by the server.

W3C web clients create a vehicle object to access the API
provided by the server, as follows.

The "vehicle" object, represents an instance of the Vehicle
Signal Server connection that allows access to Vehicle Data
through the W3C Information API. The supported methods are:

1. Authorize - Authorize a client to access the Vehicle API (TLS)

2. GET - Gets the value of a parameter, like body.mirrors.left

3. SET - Sets the value for a parameter

4. Subscribe - Subscribe to status changes

5. Unsubscribe

6. getVSS - get the JSON representation, to be used in GET/
SET/SUBSCRIBE/UNSUBSCRIBE API.

The message format is JSON. Below is a simple flow diagram
that explains the communication between W3C automotive
clients and servers.

var vehicle = new WebSocket("wss://wwwivi", "wvss1.0");

Server(s)

W3C Vehicle API Component Diagram

Browser
(Web Page)

Web
Runtime

(HTML App)

Native or
Managed

Application
System

Internet

Vehicle

JavaScript Library
(W3C Vehicle API)

Web Client Web Agent
Native or
Managed

Agent

Native or
Managed

Client

System

Server
(W3C Vehicle APIs)

WebSocket and/or
RESTful Web Service

Franca IDL etc.

Web IDL

© Copyright Open Mobile Alliance 2017

6 / 15

The getVSS API provides a JSON payload that represents the
vehicle information accessible to clients. The authorization
mechanism helps implement role-based access to vehicle
data.

Given below is an example of how a web client would invoke
a "Subscribe" request to the vehicle server.

This example registers the client to be notified about changes
to "body.mirrors.left" by the vehicle server. The client can
process the changes via Javascript callbacks.

The W3C Automotive Business Group recently met at
the Genivi AMM in San Franciso and showed their demo
implementation of the above API. With less than 100 lines of
Javascript, developers can easily integrate Vehicle data into
their apps and services. Here's a screenshot of the demo.

OMA GotAPI and DWAPI
This section introduces the OMA Generic Open Terminal
API Framework (GotAPI) v1.1 Enabler, and the GotAPI-based
Device WebAPI (WAPI) v1.0 \[DWAPI\]. At a high level, GotAPI
leverages widely supported Web technologies to enable
a GotAPI server host (e.g. the Auto system) to provide an
easy-to-integrate framework. Under this context apps can
register and authenticate, discover available API services,
access those API services, and secure the data exchanged
between apps and other devices/services accessed through
the GotAPI server. Without GotAPI, apps typically would have

Overview: Various External Devices Working with Apps Through GotAPI

browser

GotAPI

plug-ins:
Device API

web apps

smart phone

GotAPI: Provides
a total framework
for applications
to access external
devices through
device APIs using
Web technologies

Plug-ins:
Implement device
APIs exposing
services from
external devices to
applications through
GotAPI

REQ: Websocket connection (wss://wwwivi/)

Websocket connection established

REQ: getVSS - {"action":"getVSS","path":"*"}

RES: Vehicle VSS file (JSON) - {"action":"getVSS","path":"all","vss":" ... "}

REQ: get/set/subscribe/unsubscribe - {"action":"get","path":"Attribute.*"}

RES: get - {"action":"get","path":"Attribute.*","value":"{ ... }"

REQ: subscribe - {"action":"subscribe","path":"Attribute.*","requestId":"733547"}

REQ: subscribe - {"action":"subscribe","requestId":"733547","subscriptionID":"{ ... }"

Vehicle
Client

Vehicle
Server

vehicle.send(' { "action": "subscribe", "path": "body.
mirrors.left","reqId": [some_unique_value] } ');

© Copyright Open Mobile Alliance 2017

7 / 15

to be designed to support the specific methods through which
other devices/services are accessed, e.g. a variety of APIs,
protocols, and connection bearers.

DWAPI builds upon GotAPI in defining Web-based APIs
used to access healthcare devices through IEEE-specified
interfaces. Additional APIs such as for 3D printer access are in
development at OMA.

GotAPI defines how apps and the GotAPI enabler components
interact through the interfaces illustrated below:

• GotAPI-1 enables applications to make API requests and
receive responses. This interface is generically specified
by GotAPI, as GotAPI-based API specifications will define
specific request/response transactions that are utilized in
host devices based on the available interface technologies,
payload protocols, and their appropriate design patterns.
These options include:

• The interface technologies TLS 1.2, HTTP/1.1, HTTP/2,
Server-Sent Events

• The design patterns REST and JSON, such as JSON-
RPC

• A Temporary Server Feed (TSF) mechanism for binary
data responses and triggering different protocols

• The initiation of the asynchronous messaging interface,
GotAPI-5, to use WebSocket

• GotAPI-2 enables applications to obtain authorization for
access to GotAPI-based APIs. This interface is fully specified
by GotAPI, being a standard (though optionally used) support
function for all GotAPI-based APIs. GotAPI-2 supports
bindings and request/response transactions that are utilized
in host devices based on the available interface technologies.
These options include the interface technologies TLS 1.2,
HTTP/1.1, HTTP/2, and URI scheme handling. The GotAPI-2
interface relies upon the concepts of OAuth, though with
different semantics as necessary for adaptation to the
available interface technologies.

• GotAPI-3 enables the remote provisioning of API access
authorizations through a policy management function, which
may include one or more of:

• OMA Device Management, using a Managed Object
(MO) to be defined in a future version of the GotAPI
enabler

• An implementation-specific policy management service

• GotAPI-4 enables Extension Plug-Ins for external devices
and internal enablers through which they communicate with
the GotAPI Server. Note that host-device-internal enablers/
applications may also be connected to GotAPI servers
directly in implementation-specific ways without using the
GotAPI-4 interface and Extension Plug-Ins.

The Extension Plug-Ins are independent applications. They
are the mediators between the GotAPI Server, and external
devices and internal enablers/applications. Typically, there are
expected to be multiple Extension Plug-In applications installed
or preinstalled on a device by the user.

The GotAPI-4 interface provides the following functions
concerning Extension Plug-Ins:

1. Plug-In Discovery: GotAPI-4 Plug-In Discovery enables the
GotAPI Server to discover the targeted Extension Plug-In
which an application wants to access and communicate.

2. Service Discovery: GotAPI-4 Service Discovery enables
the GotAPI Server to find all the services provided by an
Extension Plug-In. In this context, the "service" means
an external device or a function provided by an internal
enabler through an Extension Plug-In. The Service Discovery

GotAPI Architecture

HTTP,
WebSocket

WebRTC

OS-specific communication
channel (i.e. Inten)

user device (terminal)

WiFi,
Bluetooth,

etc.

smart device health care toy, robot

web runtime

hybrid app

web appnative app

web app

web browser

HTTP,
WebSocket

WebRTC

HTTP,
WebSocket

WebRTC

GotAPI app

GotAPI auth server

other
enabler

extension plug-in

external deviceexternal deviceexternal device

WiFi,
Bluetooth,

etc.

WiFi,
Bluetooth,

etc.

GotAPI server

© Copyright Open Mobile Alliance 2017

8 / 15

provides not only the list of services but also the availability
of each service at the time.

3. Approval: GotAPI-4 Approval is the function to ensure
security, especially to protect users’ data and privacy from
unwanted exploits, so that the users can safely use the
application with external devices and enablers that connect
via Extension Plug-Ins.

4. Data Forwarding: GotAPI-4 Data Forwarding is the
function that enables an application to communicate with
the targeted Extension Plug-In through the GotAPI Server.
Data Forwarding takes place after Plug-In Discovery
(optional), and Approval processes are completed. GotAPI-4
Data Forwarding uses the "pass-through" mechanism so
that the application can access and communicate with the
APIs that (i) are implemented in the Extension Plug-In and
(ii) expose the features of the external devices or internal
enablers.

• GotAPI-5: The GotAPI-5 interface enables applications to
listen to asynchronous messages from Extension-Plug-Ins via
the GotAPI Server using WebSockets.

Example Use Cases for OMA Device API utilized in
the Auto Environment
OMA device APIs can enable synergy between app use in the
Auto environment (e.g. driver safety, IoT, etc.) and evolve Auto
technologies. For example:

• An Auto system app can monitor driver's vital signs
(heartbeat, breathing rate, temperature, blood pressure, etc.)

• A user can download an RVI app providing Mobile Keyless
Entry to their smartphone, and use it to unlock the vehicle

• Auto system apps can also discover other external sensors,
e.g. road sensors, outside air quality sensors, etc.

Through the two essential roles below, Auto systems (e.g. an
RVI) that host a GotAPI-based API server can support a wide
variety of use cases for apps running in the Auto system, e.g.

• the Auto system can offer vehicle information/services to
apps running in an Auto Web runtime environment

• the Auto system can act as a GotAPI client in accessing
information/services provided by connected devices

These use cases shown below:
GotAPI Interfaces

user device

GotAPI-1

application

other
enablersextension plug-in

other devices

GotAPI
auth server

policy
management

GotAPI
server

GotAPI-2

newly
added

GotAPI-5

GotAPI-4 GotAPI-3

GotAPI

Use Case A: Web apps (e.g. an Auto Driving Lessons
Coach) can access the RVI data and external device
data through GotAPI/Device API. GotAPI enables
the Web app to access RVI information/services
without needing to implement the RVI-specific

interfaces:

browser

GotAPI

plug-ins:
Device API

RVI plug-in

RVI

external
devices

carbreath
analyzer web apps

RVI

HVAC

media player

display

© Copyright Open Mobile Alliance 2017

9 / 15

Internet of Things (IoT)
Protocols
OMA Lightweight M2M (LwM2M)
Overview

The OMA LwM2M (Light Weight Machine to Machine)
protocol provides the capability for applications to
communicate and manage IoT devices. LwM2M is based on
the IETF Constrained Application Protocol (CoAP) providing
communication between a LwM2M Server and a LwM2M
Client (where Client is in a constrained IoT device) and has
been deployed by multiple client and server providers.

Key features
Some of the abilities which are helpful from connected car
perspective from LwM2M are the following:

• Low data byte transmission with allowance for client to
sleep (i.e., non-continuous communication)

• Suitable for constrained devices (hence reduced footprint for
reduced CAPEX for car manufacturers)

• Several objects can be reported in one message using
simple content types like TLV, JSON and single objects with
simple text content type

• Ability to support a range of solutions through pre-defined
objects (connected car objects/resources)

• Client (connected car) could send notifications to server
based on defined trigger events e.g. periodic reporting,
reporting upon a change of value, and reporting based on

thresholds reached. This is key as it gets past the poll and
notification model

• LwM2M by default works with 3GPP technologies, hence,
easier integration with MNOs

Core Interfaces
The core interfaces between the server and the client are
categorized into:

• Bootstrap

• Client Registration

• Device management and service enablement

• Information Reporting

Functionality
OMA LwM2M is unique in the sense that it converges both
management and application control functionality within one
communication session allowing for efficient handling of IoT
devices. Since OMA LwM2M protocol is based on IETF CoAP,
the OMA LwM2M protocol allows different transport bindings
(e.g., UDP, SMS) and is secured using IETF DTLS protocol.

The device management features defined by OMA for release
1.0 of LwM2M are:

• Access control on the specific contents that could be
handled remotely by different entities

• Software and firmware Management for applications inside
the Client

• Lock & Wipe of the device from misuse

Use Case B: An RVI can access external device
information/services, e.g. exposing access to a

home lighting system.

GotAPI

Device APIs

external devices

car

RVI as
client / app

Device APIs

Use Case B: An RVI can access external device
information/services, e.g. exposing access to a

home lighting system.

GotAPI

Device APIs

external devices

car

RVI as
client / app

Device APIs

© Copyright Open Mobile Alliance 2017

10 / 15

• Connection management for choosing various radio
methods by the Client

• Device Capability Management to identify the capabilities
existing in the device

• Location of the device

• Connection Statistics concerning communication
characteristics over the air

Object Registry
The object registry provides a unique way of identifying the
necessary and relevant objects and is maintained by OMNA
(Open Mobile Naming Authority). It includes categories for
interleaving 3rd party management objects and application
objects into the OMNA system from vendors and other
standards organizations (for, e.g., IPSO Alliance and oneM2M)

W3C VSS Standardization
A result from the RVI project is developing within W3C
regarding the consistent naming of vehicle endpoints that
could abstract the OEM specific software from third party
applications remotely or locally accessing them, as illustrated
below:

Initially, VSS is supported by open source projects under
development in Jaguar Land-Rover's OSTC in Portland,
OR and quickly being accepted by others including some
telematics system suppliers.

OCF IoTivity

Overview and purpose of project

The Open Connectivity Foundation
The Open Connectivity Foundation (OCF), founded in 2014,
is a global consortium of more than 200 member companies,
focused on creating a single open specification to help assure

secure interoperability between devices for consumers,
business, and industry. The OCF has three key deliverables:

a. An Open Specification: URL

b. An Open-Source Reference Implementation of the OCF
Specifications: IoTivity

c. A vendor-neutral certification program: OCF certification

The IoTivity project was created to bring together the
open source community to accelerate the development
of the framework and services required to connect these
billions of devices. The IoTivity project is sponsored by the
Open Connectivity Foundation (OCF), a group of industry
leaders who will be developing a standard specification and
certification program to address these challenges. IoTivity
will deliver an open source reference implementation of the
OCF standard specifications, yet will not be limited to those
requirements. IoTivity is licensed under Apache 2.0 and follows
a well-defined open source development model and release
cycle.

IoTivity has already been ported to a multitude of OS
platforms including Linux (ex. Ubuntu), Android and Tizen and

is verified on multiple developer reference
hardware devices like Arduino, Raspberry
Pi, smartphones (Android and Tizen), and
wearable devices (like Gear S2). IoTivity
supports multiple programming languages
like Java, C/C++, Javascript (nodejs), etc.
For resource constrained devices running
on low power MCUs, IoTivity has an
alternative implementation of the core
OCF specifications known as “IoTivity-
constrained."

IoTivity Architecture
The IoTivity architecture can be organized
into three layers.

1. The Transport Abstraction layer abstracts
the wired/wireless connectivity details for different hardware
and software platforms and presents a unified API to enable
secure Device-To-Device communications between OCF
devices in a transport agnostic way.

2. The core framework implements the core OCF protocol
as defined in the OCF specifications and handles essential
functions like security, device discovery, data transmission
and management and device provisioning.

3. The data models help represent the individual devices
and their capabilities as resources, as defined in the OCF
specifications, that can be securely controlled by other OCF
devices in the network.

body

weight

engine

mirrorspeed

fuel type

RPM door

rightleft

dimmedheated

signal

. . .

. . .

branch attribute

© Copyright Open Mobile Alliance 2017

11 / 15

An elaborate description of OCF and IoTivity is outside the
context of this report. Please refer to the references section
for more details.

The OCF Automotive Project
The automotive domain has been one of the key areas of
focus for OCF since the beginning and as consumers start
expecting their “connected vehicle” to be part of a seamless
experience that depends on how the vehicle operates in
a smart ecosystem involving a smart home, intelligent
infrastructure and even with other vehicles.

In the words of Bill Ford (https://www.ted.com/talks/bill_
ford_a_future_beyond_traffic_gridlock)

“We are going to build smart cars, but we also need to build
smart roads, smart parking, smart public transportation
systems and more... We need an integrated system that uses
real-time data to optimize personal mobility on a massive scale
without hassle or compromises for travelers.”

Optimizing personal mobility is no longer with the connected
vehicle alone. To unlock these opportunities, OCF launched
the Automotive Project in August 2016. For an automotive IoT
ecosystem to flourish, the deployment architecture should be
flexible enough for the key stakeholders to bring in their value
proposition and make it easy for consumption by the rest of
the ecosystem. Service providers hosting the infrastructure
expect minimal changes to the existing investments and
expect new revenue streams by extending their services
into the IoT network. Customers expect new services and
experiences with zero setup overhead. Application developers
are looking to leverage their existing assets and generate
more user engagement. The aim of the Project is to provide
the technology, standards and collaboration needed to
ensure secure interoperability between automotive and other
verticals, starting with consumer electronics, smart home, and

healthcare. The initial use cases enabled by the project fall into
the following broad categories.

• Home Energy Management

• Security System Interaction

• Vehicle Location

• Smart Home device status

• Vehicle Control from Smart Device

• Smart Device Control from Vehicle

• Smart Mobility service integration

The Project is led by members from Samsung, Honeywell,
Cisco, SmartThings, ETRI, GRL and Tinnos. The project will also
closely collaborate with other OCF working groups, leading
automotive companies and alliances, open source projects and
standards bodies. The OCF Automotive Project will define the
data models. Additionally, the group will drive the certification
requirements for compliant bridging implementations, which is
essential for realizing valuable and commercially attractive use
cases, to the automotive industry.

Initial Prototyping
OCF Automotive Project has been under incubation for the
past six months. The incubation was carried out together
with the Genivi Alliance under the Genivi Incubator projects
initiative. The goals for this incubation involved recognizing the
cases mentioned above using IoTivity open source project and
the RVI open source implementation provided by Genivi.

The RVI or Remote Vehicle Interaction project provides a
standardized means for communications between the vehicle
and its remote services over many different protocols. RVI
separates the vehicle data representation from the transport.
The "Vehicle Signal Specification" is a straightforward
and flexible format to represent vehicle signals using a

enterprise industrial auto education healthconsumer

data
transmission

data management

security, identity and permissions

resource model

discovery device
management

data models

core
framework

transports

https://www.ted.com/talks/bill_ford_a_future_beyond_traffic_gridlock
https://www.ted.com/talks/bill_ford_a_future_beyond_traffic_gridlock

© Copyright Open Mobile Alliance 2017

12 / 15

tree-like hierarchy. RVI Core stack handles the software
infrastructure needed to discover other RVI endpoints and
end to end delivery of messages, i.e. the transport agnostic
communications infrastructure. RVI is capable of handling
message delivery over Bluetooth, WiFi, LTE and SMS.

Remote Vehicle Interaction Overview
The RVI or Remote Vehicle Interaction project provides a
standardized means for communications between the vehicle
and its remote services over many different protocols. RVI
separates the vehicle data representation from the transport.
The "Vehicle Signal Specification" is a straightforward
and flexible format to represent vehicle signals using a
tree-like hierarchy. RVI Core stack handles the software
infrastructure needed to discover other RVI endpoints and
end to end delivery of messages, i.e. the transport agnostic
communications infrastructure. RVI is capable of handling
message delivery over Bluetooth, WiFi, LTE and SMS.

RVI project also publishes the “VEHICLE SIGNAL
SPECIFICATION” via GitHub.

This repository defines a set of vehicle signals that can be
used in automotive applications to communicate the state
of various vehicle systems. A standardized vehicle signal
specification allows for an industry actor to use a common
naming space for communicating vehicle state and, ultimately,
permits the decoupling of the IVI stack from the underlying
vehicle electrical architecture. The collection of signal
specifications, or simply signals, is vendor independent.
Vendor-specific extensions are specified in a dedicated and
uncontrolled branch of the signal specification tree.

An open source RVI implementation combined with an open
data format (VSS) to represent vehicle state, together provide
the necessary software components that can provide secure
connectivity to select functions of a vehicle, in a customizable
manner. RVI enables an easy way to combine IoT devices and
vehicle states to implement new services that leverage the
capabilities of these devices.

Developing the OCF-Vehicle Translator
A MEAN (Mongo-Express-Angular-Node) stack based
gateway framework (WSI – Web Service Interface) for
bringing multiple services and IoT devices together as part
of a single programmable structure, was already available in
the context of the IoTivity open source project. We defined
an abstract service metadata model as a way for services
to be represented within an IoT network and to move the
execution of the business logic from the cloud to inside the IoT
network or automobile depending on the desired deployment
configuration. This approach provides the flexibility to choose
the nexus of device-service integration at the hands of the
developers.

Thinking about the connectivity to the vehicle as a service,
with the help of RVI, helped us model the use cases regarding
discovering and invoking services provided by an RVI instance.

cloud

SOTA

RVI core

mobile device

door
unlock

media
control

vehicle
tracking

RVI SDK

RVI core

vehicle

SOTA

media
player

body
control

GPS

SMS / 3G /
LTE / WiFi

/ BT

body engine

hmi

private

oem_x

anti_gravity teleport
. . .

oem_x_proprietary.vspec

oem_x_proprietary.vspec

vss_1.2.vspec

#include vss_1.2.vspec
private.oem_x.anti_gravity.power: ...
private.oem_x.teleport.target.loc: ...

• a proprietary signal specification can use the GENIVI VSS as a starting point
• can be used in production project to integrate with vendors
• mature private extensions can be submitted for VSS inclusion

. . . power target_loc . . .

© Copyright Open Mobile Alliance 2017

13 / 15

This made the task of realizing the use cases to be simply
a matter of service invocation rather than dealing with the
protocol or messaging details. This reduces the burden for app
developers to a large extent.

The RVI service node hosted in the vehicle HMI running on
GDP connects via the cloud to the home gateway. The RVI-
OCF translator/gateway also runs an RVI node. RVI provides
many means to access services, and we decided to use
WebSockets. The RVI-OCF translator/gateway connects via
WebSockets to the local RVI node which then talks to the
remote RVI node. Connection & remote RVI service discovery
is handled purely by RVI and the RVI-OCF translator/gateway.

After connecting to the remote RVI node, the WSI Gateway
just translates between the service definitions provided by
Remote RVI Service Node into corresponding OCF device
control commands based on application developer logic. This
mapping is entirely independent of how the gateway functions
and thus provides maximum flexibility to implement any rules
or service logic you can come up with, depending on the
scenario. In this case, the service was controlling the HVAC
parameters of a vehicle. In future, we could extend the service
to be whatever the situation demands. Another major benefit
of this approach is that the IoT device data is never transmitted
out of the home. Similarly, the vehicular information is never
sent to the cloud. This provides a clear separation of the data
across the domains, namely smart home and vehicle with a
reduced security and privacy risk – while giving total control
over the customer data to the existing services. In addition
to the above demos and use cases, we also have made
OCF stack called as IoTivity, as part of the GDP and AGL
(Automotive Grade Linux), so that interested developers will
now be able to implement use cases.

The OCF-Vehicle Translator is a software component that can
be placed in

1. Cloud

2. Home Gateway

3. Vehicle IVI unit

Depending on the desired end user experience and
deployment configuration, the translator enables seamless
service oriented access between IoT devices, web services
(apps) as well as vehicle controls.

OCF has the vision to connect the next 25 billion things

• Automakers want simple interconnection with smart devices.

• Developers want apps to work across car brands and
ecosystems.

• End users want secure connectivity and services across
devices.

The goal of OCF is to help create an interoperable specification
for automotive IVI domain; that enables connected vehicle
use cases. Over the next few months, Genivi and OCF will be
working together with the W3C Automotive Working Group
to develop OCF data models for automotive. These can be
used by OCF-Vehicle translator implementations, web service
integrators, or home gateway developers to build products and
services that help bring the connected vehicle – IoT crossover
scenarios to life.

Making a Perfect Knot
This paper tells a story about the desire for both automotive
and consumer electronics to find improved way to interact
and provide the compelling experience to buyers of cars
and "things" that will motivate them to invest their money in
new models that work together better. Gone are the days of
expecting customers to buy every component of a system as
all one brand as many did when buying a stereo system for
their home in the ’70s.

A matched set
of your phone,
tablet, PC, car,
home lighting,
thermostat, and
security system
is highly unlikely.
Consumers
are already
struggling with

the subtleties of Android and Apple devices with different
interactions based on closed architecture. Automakers are
resisting the entry of these individual consumer models
into their products, yet are happy to adapt cross-device
standards as shown by Toyota and Ford supporting SD-Link. An
independent ecosystem of software developers is a bold trend
in automotive. The pace of acquisition and respect for startups
by car companies continues to increase. Open source projects
such as the GENIVI IVI baseline, Linux Foundation AGL Unified

hvac

service
integration

cloud

door lock

navigation

thermostat

home IoT
devices

TV

OCF-vehicle
translator

© Copyright Open Mobile Alliance 2017

14 / 15

Code Base, as well as the RVI and IoTivity projects provide
evidence that open platforms in automotive are changing the
car development process dramatically.

The need for IoT standards is clearly needed. While these
standards emerge, both industries need to learn from past
efforts. There is some overlap between GotAPI, accepted
in the communications space, and OCF's IoTivity, which is
not yet proven but could become a standard from the device
makers. Similarly, OMA DM has an extensive implementation
portfolio with communications providers and overlaps some
with GENIVI's RVI implementation while RVI promises to
incorporate OMA DM to include carrier support of LTE.
Intensifying these efforts will help align and reuse the work
already done.

W3C has the responsibility to further the work of VSS,
regardless of the other projects, and there appears to be
no competition for this automotive specification. The W3C
Automotive Working Group needs to increase emphasis on
this aspect of the RVI related work they are undertaking
currently. Today a small handful of engineers and technical
leaders are working on these projects, this investment
by suppliers must increase. Automaker endorsement and
intention to build product will bring more experts to the table.

In all cases these projects require more automaker support to
succeed. The demonstration efforts by OCF and GENIVI are
helpful, and also deserve more interaction between OMA,
W3C, OCF to architect as a fully documented standard. SAE
must be a part of this group effort. SAE has strong alignment
with the auto suppliers and OEMs. This heritage recently
surged by substantial industry excitement around Automated
Driving Systems (ADS). No longer referred to as autonomous
driving per SAE J3016 SEP2016, these ADS modules will
not be functional as separate units but will need significant

external information from other "things" both inside and outside
the car to achieve higher levels of driving automation (Level 5).

Rather than constrain the need for standard interfaces, APIs
and data formats to convenience features (operating your
garage door) a clear standard will find its way into many
interactive automotive and consumer systems. Safety related
priorities must also align with the work of consortia focused on
automotive production development.

Unquestionably, security is a key factor and methodologies
under development for protecting and securing private and
safety-critical information should be the topic of study for
another paper in this series.

Like the integration challenges experience in enterprise
office systems have been reduced by standard data formats
and API's such as vCard and vCal. Automotive leaders and
communications leaders working together can deliver on the
promise of open, safe, secure and smart cars that work with all
your other smart "things."

Starting with three SDOs, as well as three industry consortia,
and three OSS projects much progress can be made.

This diagram highlights
the new linkages and work
programs needed to tie
the knot in these industries
through standards entirely.

All that is required is for
the lines to be made active
with contribution and
collaboration. A knot tied
three ways cannot be easily
broken.

RVI/VSS
UCD OS
Iotivity

GENIVI

OCFAGL

OMA

W3C
SAE

© Copyright Open Mobile Alliance 2017

15 / 15

References
A complete video demonstration of the OCF automotive project is available here. https://www.youtube.com/watch?v=351m-
GrRSNE

Source code is published under https://github.com/GENIVI/meta-genivi-ocf-demo/tree/master and http://git.s-osg.org/ocf-
automotive-sampleapps/

The entire blog is presented here. https://blogs.s-osg.org/osg-ocf-automotive-fortnight/

\[GotAPI\]	 Generic Open Terminal API Framework (GotAPI), Candidate Version 1.1 – 15 Dec 2015, Open Mobile Alliance, http://
technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/generic-open-
terminal-api-framework-1-1

\[DWAPI\]	 Device WebAPI-PCH, Candidate Version 1.0 – 19 Apr 2016, Open Mobile Alliance, http://technical.openmobilealliance.
org/Technical/technical-information/release-program/current-releases/oma-device-webapi-v1-0

\[OCF\]	 The Open Connectivity Foundation (http://openconnectivity.org)

\[IoTivity\]	 The open source implementation of the OCF specifications (http://iotivity.org)

\[RVI\]	 Remote Vehicle Interaction open source project (https://github.com/GENIVI/rvi_core)

\[VSS\]	 Vehicle Signal Specifications (https://github.com/GENIVI/vehicle_signal_specification)

https://www.youtube.com/watch?v=351m-GrRSNE
https://www.youtube.com/watch?v=351m-GrRSNE
https://github.com/GENIVI/meta-genivi-ocf-demo/tree/master
http://git.s-osg.org/ocf-automotive-sampleapps/
http://git.s-osg.org/ocf-automotive-sampleapps/
http://www.openmobilealliance.org/wp/
http://www.openmobilealliance.org/wp/
http://www.openmobilealliance.org/wp/
http://www.openmobilealliance.org/wp/
http://www.openmobilealliance.org/wp/
http://openconnectivity.org
http://iotivity.org
https://github.com/GENIVI/rvi_core
https://github.com/GENIVI/vehicle_signal_specification

